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Exact solution of a reaction-diffusion model with particle-number conservation
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We analytically investigate a one-dimensional branching-coalescing model with reflecting boundaries in a
canonical ensemble where the total number of particles on the chain is conserved. Exact analytical calculations
show that the model has two different phases which are separated by a second-order phase transition. The
thermodynamic behavior of the canonical partition function of the model has been calculated exactly in each
phase. Density profiles of particles have also been obtained explicitly. It is shown that the exponential part of
the density profiles decays on three different length scales which depend on the total density of particles.
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[. INTRODUCTION the particles has a shock structure. We have confirmed our
umerical results by using the Yang-Lee theory of phase

Recently much attention has been paid to the study o " . y
shocks in one-dimensional reaction-diffusion moddls4). ransitions| 18] which has recent]y been shoyvn to be appl
able to the study of the critical behaviors of out-of-

The shocks are defined as discontinuities in the space depe% o .
dence of density of particles in the system and behave a quilibrium systemq19,2q. In the _present work we will
collective excitations in the system. They can be character2"OW that by worklpg in the canonical ensemble, the .quejl
ized by their position which performs a random walk. The'S exact.Iy solvablle.ln the sense that the thermodynamic I|m|'t
best known example in which shock can appear is the asyn?—f phy5|.c'al quantl'tles can be calculate'd exactly. The canoni-
metric simple exclusion procegASEP) with open bound- cal partition function of the model defined as the sum over
aries[5]. The mathematical relevance of the ASEP is that itStationary-state weights can also be calculated exactly. By
is a discrete version of the Burgers equation in an appropriat@Pplying the Yang-Lee theory we can calculate the line of the
scaling limit. The ASEP contains one class of parti¢fest- partition function zeros and, therefore, spot the transition
class particleswhich can be injected and extracted from the point. The order of the transition can also be identified by
boundaries of a one-dimensional chain while hopping in thénvestigating the density of these zeros near the critical point.
bulk with asymmetric rates. The ASEP has several applicawe will also obtain the exact expressions for the density
tions to realistic systems. For instance, it can be consideregrofile of the particles on the chain in the thermodynamic
as a simple model for traffic floi6]. limit. This paper is organized as follows: In Sec. Il we will
There are different ways to provoke a shock in one-define the model and introduce the mathematical preliminar-
dimensional reaction-diffusion models. One can consider thgs, In Sec. |1l we will calculate the canonical partition func-
ASEP on a closed chain in the presence of a second-claggn of our model using a matrix product formalism and find
particle. Compared to first-class particles, second-class pajts behavior in the thermodynamic limit. We will also find the
ticles move very slowly. If7-12 the shape of the shock is Jine of canonical partition function zeros to confirm our nu-
calculated as seen from a second-class particle. Anotheherical results if17]. In Sec. IV we will calculate the den-
method is to introduce a slow link in the systdB]. The sity profile of the particles on the chain in each phase. In the
first-class particles cross this link with a smaller crossing rateast section we will discuss the results and compare them

than that of the other links in the system. In this case theyith the case where the total number of particles is not con-
width of the shock as a function of the length of the systengeryed.

L scales as.*’® or L2 depending on whether the density of
particles is equal tc% or not [14]. Shocks have also been
observed in the ASEP with creation and annihilation of par- II. MODEL: MATHEMATICAL PRELIMINARIES
ticles in the bulk of the systerfi5,1§.

In a recent paper we have numerically studied shocks in a

spadtlallly %symfrlnett(lc oge—dldme_nspnal branch!ngl- coalescgr;%odel and also define its grand canonical partition function.
model with Teflecting bounadaries in a canonical EnSembIgyq il then calculate the canonical partition function of the

[17]|' Itn this mlo?t_el thef Ipartlcleﬁ diffuse, tzoa?lilal‘te’ ar;)d OIe;mf'nodel explicitly. The model consists of one class of particles
agulate on a lattice of lengily however, the total number of ' ich giffuse on a one-dimensional chain of lengthwhen-

:C\/e %"?‘fff“c'est |shkept f|xe((jj.. Itis preglctedththa(; the_tmodeflllha ver two of these particles meet, they can coagulate to a
0 difierent phases and in one phase he density profiie o, ingle particle. In the same way, a single particle can deco-

agulate into two particles. There is no particle input or output
at the boundaries. The reaction rules between two consecu-
*Electronic address: farhad@ipm.ir tive sitesi andi+1 on the chain are explicitly as follows:

In this section we will briefly review the definition of the
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0+A— A+ 0 with rateq, L L

Ziw=2 5<|V| -2 n)(VVIH [7D+ (1 -n)E]V). (4)

A+0D— 0+A with rateq?, 7 = =
The Diracé function in Eqs(3) and(4) guarantees the total

A+A— A+ 0 with rateq, number of particles to b& in the steady state. In order to
have a stationary probability distribution, the operatbrs
and E besides the vector/) and (W| should satisfy the

A+A— 0+A with B
— 0+A with rateq ™, quadratic algebrg23]

0+A— A+ A with rate Aq, [EE]:O
A+0— A+A with rateAq?, (1)

— — 1 1
_ — — _ N2
in which A and Ostand for the presence of a particle and a ED-ED=q(1+A)ED qDE qD '

hole, respectively. As can be seen, the paramegtdeter-
mines the asymmetry of the model. Fqr>1 (q<1) the

particles have a tendency to move in the leftwarghtward DE-DE=- qED+ 1+ DE -qD?,
direction. For anyq the model is also invariant under the
following transformations:
— — A 1
q—q?t i—-L-i+1, (2 DD—DD=—qAED—aDE+<q+a>D2,
in whichi is a given site on the chain. One should also note
that the ruleg1) do not conserve the number of particles and P - = =
. P (WE=(WD =0, EV)=D|v)=0. (5)

therefore the model should be studied in a grand canonical
ensemble. The model without particle number conservatio
has already been studied both using empty interval metho
(EIM) and matrix product formalisfiMPF) [22,23. It turns

he operatorsa and E are auxiliary operators and do not
enter into calculating Eqs3) and (4). The following four-

out that the model has two different phases in this case: tw imensional representation has been found for the algebra
exponential phases which are called the height-density an ) [23]:

the low-density phases. On the coexistence line of these 0o o 0 0

phases the density of the particles on the chain has a linear a

profile. It is known that the phase diagram of the ASEP con- 0
tains a first-order phase transition line where the injection D= 1+A 1+A N ,
and extraction rates are equal and less l%mfkiong this line 0O O A 0 q
the density profile of particles is linear which is a conse- -1
quence of superposition of states where a shock between a
low-density region and a height-density region is present at

an arbitrary positiof5,21]. As we will see the linear profile q? q? 0 O Lo
in the present model can also be interpreted as a sign for the 1 1 q
existence of shocks. 0 0 1

In order to study the shocks we restrict the total number E= 1+a 1+4 5 | W= o ©
of particles on the chain to b so that their total density is 0 0 1 ¢ b
always equal tp=M/L. This means that we are working in 0 0 0 P

a canonical ensemble. The stationary-state probability distri-

bution function can be calculated using the MPF as followsin which a andb are arbitrary constants arhW}_is simply a

We assign two noncommuting operatdsand E to a par-  transpose ofW|. The matrix representations fr andE are

ticle and a hole, respectively. Now the probability for occur-giso given in[23]. Using Egs.(6) one can calculate the
ring any configuration{r}={r;, ... 7} in the steady state steady-state weight of any given configuration.

with exactlyM particles can be obtained from It turns out that the direct calculation of E¢d) is not
always an easy task; therefore, we define the grand canonical

L
oM - 2-_1 7) partition function which can easily be calculated:

L
P = ————— WL [7D + 1 -nEV). @)
: i=1

L L
— — M
in which =1 if the sitei is occupied by particles and ZL@_% <W|i1:[l[7'§D+(l WEIV) = ME:O§ Zim (7)

=0 if it is empty. The normalization factdf, y, in Eq. (3),

which will be called the canonical partition function of the in which £ is the fugacity associated with the particles. The
model hereafter, should be obtained from the fact thatotal density of particleg should then be fixed by the fugac-
2P =1. It can be written as ity of them through the equation
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. &0 ensemble into those in the canonical ensemble using the
p= im =—In ZL(&) (8) formula
One can expect that each vaIue. of the fqgagicprresponds. w _ 1 <pi><LU>(§)
to each value of the total density. In this case, the density- (P = o df—gml - (11)
C

fugacity relation(8) is invertible and the equivalence of the
canonical and grand canonical ensemble holds. After calcu-
lating the grand canonical partition functigr), one can in- As in Eq.(9) the contourC in Eq. (11) encircles the origin
vert the series to calculate the canonical partition functiorfnticlockwise. In Egs.(10) and (11) the superscript(u)

using means that it is an unnormalized quantity. The normalized
average( Earticle number at siteshould be obtained from
1 Z () (pir={pp N 1Z .
Ziu=—1_d , 9 L,M )
LM 2 fc f §M+l ( )

IIl. CANONICAL AND GRAND CANONICAL

where C is a contour which encircles the origin anticlock-
PARTITION FUNCTIONS

wise. For our model, however, there appears a situation
where the equivalence of ensembles fails in a special region

i th There is the ol h he sh In this section we will calculate the grand canonical par-
In the pqrameters space. There Is the place where the s o%‘fﬁon function of the model explicitly and then using E§)
appear in the system.

A . hvsical . dv the d one can obtain the canonical partition function by applying
s an important physical quantity one can study the deNy,q gieepest decent method. The grand canonical partition

sity profile of particles on the ch_ain in the can_onical ENfiinction of this model can easily be calculated using &g.
semble; nevertheless, the calculation of the density profile o%"

A ; ) . - “and is simply given b
the particles is much more easily done in the grand canonica Py g y
ensemble. Let us define the unnormalized average particle

number at sité in the grand canonical ensemble as Z,(&) = (W(éD + B)"[V) =(WICH|V), (12
“ i-1 in which we have define€:=¢D+E. The matrix represen-
(o9 = 2 (W T [7D + (1 - 7)E]eD tations for the operato® andE are given by Eq(6). After
7 = some algebra we find
L
x[1 7D+ -7)EIV). (10 29=29+zPO+2©+2z"®, (13

j=i+l

We will then translate the results in the grand canonicain which

2= {[q2 “+ 5;)?‘[135(21 FEN)-1] ] a+er (19
2O [ T e gA)]}QZL’ 9
2= [ @+ DI +_A(>f—(?;<_11i(§15]ﬁ)— Fa+en)] ] 70 18
2= {[qz(l +A)-(1 +q ;ig]g[;z?li £0) — (1+4)] } ( i%)L' 17

Because of the symmetry of the mod@&), one will only  viously for g>1 we haveg?>q 2 On the other hand, since
need to study either the cage-1 or g<1. We will consider A, ¢>0, we always havél+&A) >[(1+&A)/(1+A)]. Now

the casey> 1 hereafter, and the results for the cgsel can  two different cases can be distinguished: We will either have
easily be obtained by applying the transformatio®s Ob- 1<q<\{1+&A or 1<\1+&A<q. For these two cases the
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asymptotic behaviors of the grand canonical partition func{22)—(24), we find, in the thermodynamic limit(L,M

tion (13) can be obtained in the large-system-size limit

Z (¢ = {

For a fixed total density of particlgs(which means fixed)
and A, the phase transition occurs gf=+v1+¢A. Now one

ZM(8), 1<q<1+éA,

— 18
72, 1<V1+&A<q. (18

—%,p=M/L),

u? +v? _@-pt

[(WP-0v2-1)2+Qw)? P2~ pr

(25

in which we have definedi:=Re(q) andv:=Im(q). It can

can easily calculate the canonical partition function of theeasily be verified that Eq25) intersects the positive reg|

system in these phases using E®). By using Eq.(8) for
the first phase the condition<lq<y1+£A translates to

1<q<1/(¥1-p) and the canonical partition function, which
is given by

zV(®)
§M+l ’

1
Z =5~ f dg (19)
C

axis atu,=1/(\'1—-p). As can be seen, E(5) is exactly the
one that we had obtained j&4] for the same model with the
left boundary open and conservation of total number of par-
ticles. In[24] we had also found that the density of canonical
partition function zeros as a function gfdrops to zero near
the critical point. This indicates that a second-order phase
transition takes place at the critical point. We have checked
that the density of canonical partition function zeros in the

can readily be calculated by applying the steepest decenfesent model also approaches to zero near the critical points

method. We find
0 _ q4AM—lp3/2—M(l _p)M—L—llz
M 1-A-pPlle?- (1 -p)]

1<g< !
q .
Vli-p

(20)

For the second phase the conditior 11 +£A < g translates
to 1<1/(yY1-p)<q. We have also

I <05
- 217 fcdg §M+l .

z", (21

qc andqg.

For g<1 we should only changg— g™ which means
u—u/(U+v?) andv——-v/(U?+v?) in Eq. (25). In this case
the line of canonical partition function zeros intersects the
positive realq axis atu,=v1-p. It is not difficult to check
that in the thermodynamic limit the numerical estimates for
the canonical partition function zeros obtained[iV] lie
exactly on Eq(25) and its counterpart fog<<1.

IV. DENSITY PROFILE OF PARTICLES

Keeping in mind that the contour of the integral above is a

unit circle and that its integrand has two poles, one of which,

&=(0?-1)/A, is smaller than unity and the otheép=¢;
+0? is larger than unity, one can easily calculate E2{l)
using the steepest decent method. We find

q 1
@+ D@-o" T,
It can be seen that for a fixed densjiythe transition point
q.=1/(v1-p) does not depend oh. This has already been
predicted in[17]. For the case<1 the transition point is
found to beqé:\s"l—p which agrees again with our predic-
tions in[17].

4+2LAM—1

20, 22

In [17] we have estimated the roots of the canonical par

tition functionZ,_ as a functiony both forq>1 andq<1.

Now we consider the average particle number at each site.
As for the partition functions, it turns out that the calculation
of density profile of the particles in the grand canonical en-
semble is much easier than that in the canonical ensemble;
therefore, we will first calculat¢l0) and then translate out
results into the canonical ensemble using 8d). The un-
normalized average particle number at siten the grand
canonical ensemblgl0) can also be written as

(p(&) = (WIC™2eDCH vy, (26)

in which C:=¢D+E. Now one can use the matrix represen-

tation (6) to calculate Eq(26). After some algebra we find

From there we were able to find the transition points. Let us

now calculate the line of the canonical partition function
zeros of the model in the complepplane forqg> 1. Defining
the extensive part of the free energy as

1
g= lim Eln Zim, (23

L,M—oo

one can calculate the line of canonical partition function ze-

ros from
Reg" =Reg'", (24)

in which g andg") are the free energy functions in the first
and the second phases, respectively. Using E2®. and

(&) = uy (g2
1+éA
1+A

.

1 +§A>i_l

1+A
(27

+U (PP A(L+EA)T+ U3(§)q2_2i<

+ Ul (OGP A(L+EA) T+ Us(§)q2L'2i(

1+EA

+Ug(H(L+EA) 1+ U7(§)< 1T+A

in which we have defined
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q'(e® - 1)?eA7 ¢+ €M) - (P - éA- D™

O [P(1+4) A - LIQA(L +€8) ~ L[GPL + £4) - A~ 1] 29
O G s 6T 29

N FerEr e ey e %0

1O = (g qui(ij[;zl()lgiAgA) 1y (3D

O~ D a9 T %

U0 = (7 a —_1?;§§éz+ a)-1]° 3

Ur(8) = e 1yeh (34

(1+A)[q*(1+A) - EA - 1[qP(1 +éA) - A - 1]

The asymptotic behaviors of E@27) can now be distin- the fourth term in Eq(27) we find that the derivative g#(x)
guished for the two mentioned cases. For the first case wheteas the following form:

1<q<1+¢£A the leading terms are the second, the fourth,

and the sixth terms in E¢27). Now using Eqs(11) and(20)

one can calculate the average particle number of the particles &P(X) = po exgLF(x)], (36)
at sitei in the canonical ensemble by applying the steepest

decent method. In the thermodynamic limit the resultis ;1o
) . 1 X
(py=p+(P-De"a-(1-pet ] 1<q< , FX)=-xIng?+xIn——-pln . (37
(35) . . .
The constanpg in Eg. (36) is determined by the fact that
in which the correlation lengths agge=|In[(1-p)/q?]|™* and 14
&=|In[g?(1-p)]|™%. For a plot of this profile see Fig. 2 in f &P(X)dX:PIOW_Phigh:q_Z_ 1. (38)
0

[17]. In the second case where<h1+¢A<q the leading
terms are the first and fourth terms in E@&.7). Using nu- i _
merical calculations we had predicted[it¥] that the density 't tUmMs OUt_,;Fhat the functioffr(x) has a maximum value at
profile of the particles in this phase is a shock in the bulk of0=p/(1—0™). One can expand(x) aroundx, up to the
the chain while it increases exponentially near the leftSécond order and approximate E86) with a Gaussian and
boundary forq>1. The density of the particles in the high- find

density region of the shock is equal ggq,=1-q 2 while in

the low-density region, it is zerg,,=0. One can easily

— ~ AV
calculate the share of the first term in to the density profile of pr(X) o zwpq—Z(l a)
the particles in the canonical ensemble using &4). By o2 )
applying the steepest decent method one f(r.ldm‘_z)qz““. Xexp(— L(l -9 (_);‘Xo) ) 39
In order to calculate the share of the fourth term in &Y) 2pq

in the grand canonical ensemble we use the following pro-

cedure: Wherl is large, the average density profile can beBy integrating Eq.(39) the average particle number at site
described by a continuous functigiix) in terms of the res- i in the canonical ensemble for<11/(y1-p)<q is found
caled variablex=i/L where 0<x<1. By using Eq(11) for  to be
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-q? Without particle number conservation the parameter
which is the ratio of branching to coalescing rates, governs
the average density of particles on the chain. In this case the

()= (1~ e+

L o] p phase diagram of the model consists of two phases: a high-
xerfc qu—z(l —9N LT —q2) |’ (400 gensity phase and a low-density phase. In the height-density
phase the density profile of the particles has an exponential
1 behavior with two different correlation lengthitn[g?/(1
1<——=<q, +A)]|™ and |In[g?(1+A)]|™ . In the low-density phase the

vl-p density profile of the particles has also an exponential behav-

in which the exponential part drops with the length scald®r; however, with the length scaléi(q®)|™ and [In[q?/(1
&=|Ing¥ ! and erf¢ ) is the complementary error func- +A)]|"L. On the coexistence line between these two phases
tion. As can be seen from E10) the average particle num- the density profile of the particles has a linear decay in one
ber at sitei far from the left boundary is an error function €nd of the chain while it has an exponential decay in the
interpolating between the low-density and high-density re-0ther end of the chain with the length scdre(q®)| ™.

gions with width scaling asL. For a plot of this profile see In the canonical ensemble the total density of particles on
Fig. 2 in[17]. the chain is controlled by the parameteinstead ofA. With

particle number conservation it turns out that tpr1 the
model has two different phases: an exponential phase and a
shock phase. In the exponential phase the density profile of
In this paper we studied a one-dimensional asymmetri¢he particles has an exponential behavior with two length
branching-coalescing model with reflecting boundaries in scales|In[g?/(1-p)]|™* and [In[g?(1-p)]|"%. In the shock
canonical ensemble where the total number of particles is phase the density profile of the particles drops exponentially
constant. This model has already been studied in the literarear the left boundary with the length scdtg®)| ™. In the
ture in a grand canonical ensemble where the total number dfulk of the chain the density profile of the particles is an
particles on the chain is not fixed and can vary between @rror function with an interface which extends over a region
and 1(see[22,23 and references thergin of width L.

V. CONCLUDING REMARKS
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