
Exact solution of a reaction-diffusion model with particle-number conservation

F. H. Jafarpour1,2,* and S. R. Masharian1

1Physics Department, Bu-Ali Sina University, Hamadan, Iran
2Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-5531, Tehran, Iran

(Received 24 June 2004; published 22 November 2004)

We analytically investigate a one-dimensional branching-coalescing model with reflecting boundaries in a
canonical ensemble where the total number of particles on the chain is conserved. Exact analytical calculations
show that the model has two different phases which are separated by a second-order phase transition. The
thermodynamic behavior of the canonical partition function of the model has been calculated exactly in each
phase. Density profiles of particles have also been obtained explicitly. It is shown that the exponential part of
the density profiles decays on three different length scales which depend on the total density of particles.
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I. INTRODUCTION

Recently much attention has been paid to the study of
shocks in one-dimensional reaction-diffusion models[1–4].
The shocks are defined as discontinuities in the space depen-
dence of density of particles in the system and behave as
collective excitations in the system. They can be character-
ized by their position which performs a random walk. The
best known example in which shock can appear is the asym-
metric simple exclusion process(ASEP) with open bound-
aries[5]. The mathematical relevance of the ASEP is that it
is a discrete version of the Burgers equation in an appropriate
scaling limit. The ASEP contains one class of particles(first-
class particles) which can be injected and extracted from the
boundaries of a one-dimensional chain while hopping in the
bulk with asymmetric rates. The ASEP has several applica-
tions to realistic systems. For instance, it can be considered
as a simple model for traffic flow[6].

There are different ways to provoke a shock in one-
dimensional reaction-diffusion models. One can consider the
ASEP on a closed chain in the presence of a second-class
particle. Compared to first-class particles, second-class par-
ticles move very slowly. In[7–12] the shape of the shock is
calculated as seen from a second-class particle. Another
method is to introduce a slow link in the system[13]. The
first-class particles cross this link with a smaller crossing rate
than that of the other links in the system. In this case the
width of the shock as a function of the length of the system
L scales asL1/3 or L1/2 depending on whether the density of
particles is equal to1

2 or not [14]. Shocks have also been
observed in the ASEP with creation and annihilation of par-
ticles in the bulk of the system[15,16].

In a recent paper we have numerically studied shocks in a
spatially asymmetric one-dimensional branching-coalescing
model with reflecting boundaries in a canonical ensemble
[17]. In this model the particles diffuse, coagulate, and deco-
agulate on a lattice of lengthL; however, the total number of
the particles is kept fixed. It is predicted that the model has
two different phases and in one phase the density profile of

the particles has a shock structure. We have confirmed our
numerical results by using the Yang-Lee theory of phase
transitions[18] which has recently been shown to be appli-
cable to the study of the critical behaviors of out-of-
equilibrium systems[19,20]. In the present work we will
show that by working in the canonical ensemble, the model
is exactly solvable in the sense that the thermodynamic limit
of physical quantities can be calculated exactly. The canoni-
cal partition function of the model defined as the sum over
stationary-state weights can also be calculated exactly. By
applying the Yang-Lee theory we can calculate the line of the
partition function zeros and, therefore, spot the transition
point. The order of the transition can also be identified by
investigating the density of these zeros near the critical point.
We will also obtain the exact expressions for the density
profile of the particles on the chain in the thermodynamic
limit. This paper is organized as follows: In Sec. II we will
define the model and introduce the mathematical preliminar-
ies. In Sec. III we will calculate the canonical partition func-
tion of our model using a matrix product formalism and find
its behavior in the thermodynamic limit. We will also find the
line of canonical partition function zeros to confirm our nu-
merical results in[17]. In Sec. IV we will calculate the den-
sity profile of the particles on the chain in each phase. In the
last section we will discuss the results and compare them
with the case where the total number of particles is not con-
served.

II. MODEL: MATHEMATICAL PRELIMINARIES

In this section we will briefly review the definition of the
model and also define its grand canonical partition function.
We will then calculate the canonical partition function of the
model explicitly. The model consists of one class of particles
which diffuse on a one-dimensional chain of lengthL. When-
ever two of these particles meet, they can coagulate to a
single particle. In the same way, a single particle can deco-
agulate into two particles. There is no particle input or output
at the boundaries. The reaction rules between two consecu-
tive sitesi and i +1 on the chain are explicitly as follows:*Electronic address: farhad@ipm.ir
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0” + A → A + 0” with rateq,

A + 0” → 0” + A with rateq−1,

A + A → A + 0” with rateq,

A + A → 0” + A with rateq−1,

0” + A → A + A with rateDq,

A + 0” → A + A with rateDq−1, s1d

in which A and 0” stand for the presence of a particle and a
hole, respectively. As can be seen, the parameterq deter-
mines the asymmetry of the model. Forq.1 sq,1d the
particles have a tendency to move in the leftward(rightward)
direction. For anyq the model is also invariant under the
following transformations:

q → q−1, i → L − i + 1, s2d

in which i is a given site on the chain. One should also note
that the rules(1) do not conserve the number of particles and
therefore the model should be studied in a grand canonical
ensemble. The model without particle number conservation
has already been studied both using empty interval method
(EIM) and matrix product formalism(MPF) [22,23]. It turns
out that the model has two different phases in this case: two
exponential phases which are called the height-density and
the low-density phases. On the coexistence line of these
phases the density of the particles on the chain has a linear
profile. It is known that the phase diagram of the ASEP con-
tains a first-order phase transition line where the injection
and extraction rates are equal and less than1

2. Along this line
the density profile of particles is linear which is a conse-
quence of superposition of states where a shock between a
low-density region and a height-density region is present at
an arbitrary position[5,21]. As we will see the linear profile
in the present model can also be interpreted as a sign for the
existence of shocks.

In order to study the shocks we restrict the total number
of particles on the chain to beM so that their total density is
always equal tor=M /L. This means that we are working in
a canonical ensemble. The stationary-state probability distri-
bution function can be calculated using the MPF as follows:
We assign two noncommuting operatorsD and E to a par-
ticle and a hole, respectively. Now the probability for occur-
ring any configurationhtj=ht1, . . . ,tLj in the steady state
with exactlyM particles can be obtained from

Pshtjd =
dsM − oi=1

L
tid

ZL,M
kWup

i=1

L

ftiD + s1 − tidEguVl, s3d

in which ti =1 if the site i is occupied by particles andti
=0 if it is empty. The normalization factorZL,M in Eq. (3),
which will be called the canonical partition function of the
model hereafter, should be obtained from the fact that
ohtjPshtjd=1. It can be written as

ZL,M = o
htj

dSM − o
i=1

L

tiDkWup
i=1

L

ftiD + s1 − tidEguVl. s4d

The Diracd function in Eqs.(3) and(4) guarantees the total
number of particles to beM in the steady state. In order to
have a stationary probability distribution, the operatorsD
and E besides the vectorsuVl and kWu should satisfy the
quadratic algebra[23]

fE,Ēg = 0,

ĒD − ED̄ = qs1 + DdED −
1

q
DE −

1

q
D2,

D̄E − DĒ = − qED+
1 + D

q
DE − qD2,

D̄D − DD̄ = − qDED −
D

q
DE + Sq +

1

q
DD2,

kWuĒ = kWuD̄ = 0, ĒuVl = D̄uVl = 0. s5d

The operatorsD̄ and Ē are auxiliary operators and do not
enter into calculating Eqs.(3) and (4). The following four-
dimensional representation has been found for the algebra
(5) [23]:

D =1
0 0 0 0

0
D

1 + D

D

1 + D
0

0 0 D 0

0 0 0 0
2, uVl =1

a

0

q2

q2 − 1
2 ,

E =1
q−2 q−2 0 0

0
1

1 + D

1

1 + D
0

0 0 1 q2

0 0 0 q2
2, uWl =1

1 − q2

1

0

b
2 , s6d

in which a andb are arbitrary constants anduWl is simply a

transpose ofkWu. The matrix representations forD̄ andĒ are
also given in [23]. Using Eqs.(6) one can calculate the
steady-state weight of any given configuration.

It turns out that the direct calculation of Eq.(4) is not
always an easy task; therefore, we define the grand canonical
partition function which can easily be calculated:

ZLsjd = o
htj

kWup
i=1

L

ftijD + s1 − tidEguVl = o
M=0

L

jMZL,M , s7d

in which j is the fugacity associated with the particles. The
total density of particlesr should then be fixed by the fugac-
ity of them through the equation

F. H. JAFARPOUR AND S. R. MASHARIAN PHYSICAL REVIEW E70, 056121(2004)

056121-2



r = lim
L→`

j

L

]

]j
ln ZLsjd. s8d

One can expect that each value of the fugacityj corresponds
to each value of the total density. In this case, the density-
fugacity relation(8) is invertible and the equivalence of the
canonical and grand canonical ensemble holds. After calcu-
lating the grand canonical partition function(7), one can in-
vert the series to calculate the canonical partition function
using

ZL,M =
1

2pi
E

C

dj
ZLsjd
jM+1 , s9d

whereC is a contour which encircles the origin anticlock-
wise. For our model, however, there appears a situation
where the equivalence of ensembles fails in a special region
in the parameters space. There is the place where the shocks
appear in the system.

As an important physical quantity one can study the den-
sity profile of particles on the chain in the canonical en-
semble; nevertheless, the calculation of the density profile of
the particles is much more easily done in the grand canonical
ensemble. Let us define the unnormalized average particle
number at sitei in the grand canonical ensemble as

krilL
sudsjd = o

htj
kWup

j=1

i−1

ft jjD + s1 − t jdEgjD

3p
j=i+1

L

ft jjD + s1 − t jdEguVl. s10d

We will then translate the results in the grand canonical

ensemble into those in the canonical ensemble using the
formula

krilL,M
sud =

1

2pi
E

C

dj
krilL

sudsjd
jM+1 . s11d

As in Eq. (9) the contourC in Eq. (11) encircles the origin
anticlockwise. In Eqs.(10) and (11) the superscriptsud
means that it is an unnormalized quantity. The normalized
average particle number at sitei should be obtained from
kril=krilL,M

sud /ZL,M.

III. CANONICAL AND GRAND CANONICAL
PARTITION FUNCTIONS

In this section we will calculate the grand canonical par-
tition function of the model explicitly and then using Eq.(9)
one can obtain the canonical partition function by applying
the steepest decent method. The grand canonical partition
function of this model can easily be calculated using Eq.(7)
and is simply given by

ZLsjd = kWusjD + EdLuVl = kWuCLuVl, s12d

in which we have definedCªjD+E. The matrix represen-
tations for the operatorsD andE are given by Eqs.(6). After
some algebra we find

ZLsjd = ZL
s1dsjd + ZL

s2dsjd + ZL
s3dsjd + ZL

s4dsjd, s13d

in which

ZL
s1dsjd = F − q4Dj2

fq2 − s1 + jDdgfq2s1 + jDd − 1gGs1 + jDdL, s14d

ZL
s2dsjd = F q4sq2 − 1ds1 + jDd

sq2 + 1dfq2 − s1 + jDdgfq2s1 + Dd − s1 + jDdgGq2L, s15d

ZL
s3dsjd = F − q4sq2 − 1ds1 + jDd

sq2 + 1dfs1 + Dd − q2s1 + jDdgf1 − q2s1 + jDdgGq−2L,0 s16d

ZL
s4dsjd = F q4Dsj − 1d2

fq2s1 + Dd − s1 + jDdgfq2s1 + jDd − s1 + DdgGS1 + jD

1 + D
DL

. s17d

Because of the symmetry of the model(2), one will only
need to study either the caseq.1 or q,1. We will consider
the caseq.1 hereafter, and the results for the caseq,1 can
easily be obtained by applying the transformations(2). Ob-

viously for q.1 we haveq2.q−2. On the other hand, since
D, j.0, we always haves1+jDd. fs1+jDd / s1+Ddg. Now
two different cases can be distinguished: We will either have
1,q,Î1+jD or 1,Î1+jD,q. For these two cases the
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asymptotic behaviors of the grand canonical partition func-
tion (13) can be obtained in the large-system-size limitL
→`:

ZLsjd . HZL
s1dsjd, 1 , q , Î1 + jD,

ZL
s2dsjd, 1 , Î1 + jD , q.

J s18d

For a fixed total density of particlesr (which means fixedj)
and D, the phase transition occurs atqc=Î1+jD. Now one
can easily calculate the canonical partition function of the
system in these phases using Eq.(9). By using Eq.(8) for
the first phase the condition 1,q,Î1+jD translates to
1,q,1/sÎ1−rd and the canonical partition function, which
is given by

ZL,M
sId .

1

2pi
E

C

dj
ZL

s1dsjd
jM+1 , s19d

can readily be calculated by applying the steepest decent
method. We find

ZL,M
sId .

q4DM−1r3/2−Ms1 − rdM−L−1/2

f1 − s1 − rdq2gfq2 − s1 − rdg
, 1 , q ,

1
Î1 − r

.

s20d

For the second phase the condition 1,Î1+jD,q translates
to 1,1/sÎ1−rd,q. We have also

ZL,M
sII d .

1

2pi
E

C

dj
ZL

s2dsjd
jM+1 . s21d

Keeping in mind that the contour of the integral above is a
unit circle and that its integrand has two poles, one of which,
j1=sq2−1d /D, is smaller than unity and the otherj2=j1

+q2 is larger than unity, one can easily calculate Eq.(21)
using the steepest decent method. We find

ZL,M
sII d .

q4+2LDM−1

sq2 + 1dsq2 − 1dM , 1 ,
1

Î1 − r
, q. s22d

It can be seen that for a fixed densityr the transition point
qc=1/sÎ1−rd does not depend onD. This has already been
predicted in[17]. For the caseq,1 the transition point is
found to beqc8=Î1−r which agrees again with our predic-
tions in [17].

In [17] we have estimated the roots of the canonical par-
tition function ZL,M as a functionq both for q.1 andq,1.
From there we were able to find the transition points. Let us
now calculate the line of the canonical partition function
zeros of the model in the complexq plane forq.1. Defining
the extensive part of the free energy as

g = lim
L,M→`

1

L
ln ZL,M , s23d

one can calculate the line of canonical partition function ze-
ros from

RegsId = RegsII d, s24d

in which gsId andgsII d are the free energy functions in the first
and the second phases, respectively. Using Eqs.(20) and

(22)–(24), we find, in the thermodynamic limitsL ,M
→` ,r=M /Ld,

u2 + v2

fsu2 − v2 − 1d2 + s2uvd2gr/2 =
s1 − rdr−1

rr , s25d

in which we have defineduªResqd and vª Imsqd. It can
easily be verified that Eq.(25) intersects the positive realq
axis atuc=1/sÎ1−rd. As can be seen, Eq.(25) is exactly the
one that we had obtained in[24] for the same model with the
left boundary open and conservation of total number of par-
ticles. In[24] we had also found that the density of canonical
partition function zeros as a function ofq drops to zero near
the critical point. This indicates that a second-order phase
transition takes place at the critical point. We have checked
that the density of canonical partition function zeros in the
present model also approaches to zero near the critical points
qc andqc8.

For q,1 we should only changeq→q−1 which means
u→u/ su2+v2d andv→−v / su2+v2d in Eq. (25). In this case
the line of canonical partition function zeros intersects the
positive realq axis atuc8=Î1−r. It is not difficult to check
that in the thermodynamic limit the numerical estimates for
the canonical partition function zeros obtained in[17] lie
exactly on Eq.(25) and its counterpart forq,1.

IV. DENSITY PROFILE OF PARTICLES

Now we consider the average particle number at each site.
As for the partition functions, it turns out that the calculation
of density profile of the particles in the grand canonical en-
semble is much easier than that in the canonical ensemble;
therefore, we will first calculate(10) and then translate out
results into the canonical ensemble using Eq.(11). The un-
normalized average particle number at sitei in the grand
canonical ensemble(10) can also be written as

krilL
sudsjd = kWuCi−1jDCL−iuVl, s26d

in which CªjD+E. Now one can use the matrix represen-
tation (6) to calculate Eq.(26). After some algebra we find

krilL
sudsjd = u1sjdq2L−4i+2

+ u2sjdq2−2is1 + jDdL−i + u3sjdq2−2iS1 + jD

1 + D
DL−i

+ u4sjdq2L−2is1 + jDdi−1 + u5sjdq2L−2iS1 + jD

1 + D
Di−1

+ u6sjds1 + jDdL−1 + u7sjdS1 + jD

1 + D
DL−1

, s27d

in which we have defined
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u1sjd =
q4sq2 − 1d2jD2fjs2 + jDd − 1gsq2 − jD − 1d−1

fq2s1 + Dd − jD − 1gfq2s1 + jDd − 1gfq2s1 + jDd − D − 1g
, s28d

u2sjd =
− q2sq2 − 1dj2D

sq2 − jD − 1dfq2s1 + jDd − 1g
, s29d

u3sjd =
q2sq2 − 1dsj − 1djD

fq2s1 + Dd − jD − 1gfq2s1 + jDd − D − 1g
, s30d

u4sjd =
q4sq2 − 1dj2D

sq2 − jD − 1dfq2s1 + jDd − 1g
, s31d

u5sjd =
− q4sq2 − 1dsj − 1djD

fq2s1 + Dd − jD − 1gfq2s1 + jDd − D − 1g
, s32d

u6sjd =
− q4j3D2

sq2 − jD − 1dfq2s1 + jDd − 1g
, s33d

u7sjd =
q4sj − 1d2jD2

s1 + Ddfq2s1 + Dd − jD − 1gfq2s1 + jDd − D − 1g
. s34d

The asymptotic behaviors of Eq.(27) can now be distin-
guished for the two mentioned cases. For the first case where
1,q,Î1+jD the leading terms are the second, the fourth,
and the sixth terms in Eq.(27). Now using Eqs.(11) and(20)
one can calculate the average particle number of the particles
at site i in the canonical ensemble by applying the steepest
decent method. In the thermodynamic limit the result is

kril = r + sq2 − 1dfe−i/j1 − s1 − rde−sL−id/j2g, 1 , q ,
1

Î1 − r
,

s35d

in which the correlation lengths arej1= ulnfs1−rd /q2gu−1 and
j2= ulnfq2s1−rdgu−1. For a plot of this profile see Fig. 2 in
[17]. In the second case where 1,Î1+jD,q the leading
terms are the first and fourth terms in Eq.(27). Using nu-
merical calculations we had predicted in[17] that the density
profile of the particles in this phase is a shock in the bulk of
the chain while it increases exponentially near the left
boundary forq.1. The density of the particles in the high-
density region of the shock is equal torhigh=1−q−2 while in
the low-density region, it is zerorlow=0. One can easily
calculate the share of the first term in to the density profile of
the particles in the canonical ensemble using Eq.(11). By
applying the steepest decent method one findss1−q−2dq2−4i.
In order to calculate the share of the fourth term in Eq.(27)
in the grand canonical ensemble we use the following pro-
cedure: WhenL is large, the average density profile can be
described by a continuous functionrsxd in terms of the res-
caled variablex= i /L where 0øxø1. By using Eq.(11) for

the fourth term in Eq.(27) we find that the derivative ofrsxd
has the following form:

d

dx
rsxd . r0 expfLFsxdg, s36d

where

Fsxd = − x ln q2 + x ln
x

x − r
− r ln

r

Dsx − rd
. s37d

The constantr0 in Eq. (36) is determined by the fact that

E
0

1 d

dx
rsxddx= rlow − rhigh = q−2 − 1. s38d

It turns out that the functionFsxd has a maximum value at
x0=r / s1−q−2d. One can expandFsxd aroundx0 up to the
second order and approximate Eq.(36) with a Gaussian and
find

d

dx
rsxd . −Î L

2prq−2s1 − q−2d2

3expS− L
s1 − q−2d2sx − x0d2

2rq−2 D . s39d

By integrating Eq.(39) the average particle number at site
i in the canonical ensemble for 1,1/sÎ1−rd,q is found
to be
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kril = s1 − q−2dq2e−i/j3 +
1 − q−2

2

3erfcFÎ L

2rq−2s1 − q−2dS i

L
−

r

1 − q−2DG , s40d

1 ,
1

Î1 − r
, q,

in which the exponential part drops with the length scale
j3= uln q4u−1 and erfcs¯d is the complementary error func-
tion. As can be seen from Eq.(40) the average particle num-
ber at sitei far from the left boundary is an error function
interpolating between the low-density and high-density re-
gions with width scaling asÎL. For a plot of this profile see
Fig. 2 in [17].

V. CONCLUDING REMARKS

In this paper we studied a one-dimensional asymmetric
branching-coalescing model with reflecting boundaries in a
canonical ensemble where the total number of particles is a
constant. This model has already been studied in the litera-
ture in a grand canonical ensemble where the total number of
particles on the chain is not fixed and can vary between 0
and 1(see[22,23] and references therein).

Without particle number conservation the parameterD,
which is the ratio of branching to coalescing rates, governs
the average density of particles on the chain. In this case the
phase diagram of the model consists of two phases: a high-
density phase and a low-density phase. In the height-density
phase the density profile of the particles has an exponential
behavior with two different correlation lengthsulnfq2/ s1
+Ddgu−1 and ulnfq2s1+Ddgu−1. In the low-density phase the
density profile of the particles has also an exponential behav-
ior; however, with the length scalesulnsq4du−1 and ulnfq2/ s1
+Ddgu−1. On the coexistence line between these two phases
the density profile of the particles has a linear decay in one
end of the chain while it has an exponential decay in the
other end of the chain with the length scaleulnsq4du−1.

In the canonical ensemble the total density of particles on
the chain is controlled by the parameterr instead ofD. With
particle number conservation it turns out that forq.1 the
model has two different phases: an exponential phase and a
shock phase. In the exponential phase the density profile of
the particles has an exponential behavior with two length
scales ulnfq2/ s1−rdgu−1 and ulnfq2s1−rdgu−1. In the shock
phase the density profile of the particles drops exponentially
near the left boundary with the length scaleulnsq4du−1. In the
bulk of the chain the density profile of the particles is an
error function with an interface which extends over a region
of width ÎL.
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